
Week 13 - Friday



 What did we talk about last time?
 Defect testing
 Validation testing
 Development testing
 Unit testing
 Component testing
 System testing

 Release testing
 User testing
 Black box testing
 White box testing
 JUnit







 Test driven development (TDD) is an approach to 
development where testing and coding are interleaved

 Never move to the next increment of code until the current 
one passes its tests

 The key idea of TDD is that you write tests for the code before
you write the code



1. Identify the increment of functionality you want to add, typically small
2. Write an automated test for this functionality
3. Run the test (which should initially fail)
4. Implement the functionality and re-run the test, maybe fixing problems 

in existing code
5. Once all tests run successfully, move on to the next increment



 By making the test first, you really understand what you're 
trying to implement

 Your testing has better code coverage, testing every segment 
of code at least once

 Regression testing happens naturally
 Debugging should be easier since you know where the 

problem likely is (the new code added)
 The tests are a form of documentation, showing what the 

code should and shouldn't do





 Consider the following (partial) Clock class:

public class Clock {
private int hour;
private int minute;
private boolean am;

public Clock(int hour, int minute, boolean am) {
this.hour = hour;
this.minute = minute;
this.am = am;

}
public int getHour() { return hour; }
public int getMinute() { return minute; }
public boolean getAM() { return am; }



 We want to finish the Clock class so that it implements the 
following methods

// Returns String representation of time, e.g. "09:47 AM"
public String toString() {} 

// Adds a specific number of minutes to the current time
public void addMinutes(int minutes) {}

// Adds a specific number of hours to the current time
public void addHours(int hours) {}

}



 Instead of writing toString(), addMinutes(), and 
addHours() first, let's write a few JUnit tests for each of the 
three methods

 Then, we can come back and try to finish the methods so that 
they pass the tests



 Consider the following (partial) ArrayList class:

 An ArrayList uses a dynamic array to store data (in this case, int values)
 Although there's initially room for 10 int values, none are stored yet (as indicated by 
size)

 After 10 int values have been added, adding another will require a larger array
 We double the length of the array (and copy over the old data) whenever it needs to be 

bigger

public class ArrayList {
private int[] data = new int[10];
private int size = 0;

public int size() {
return size;

}



 We want to finish the ArrayList class so that it implements the 
following methods

// Adds to end of list (determined by size)
// If there isn't enough space, double the length of the array
// and copy over the old data first.
public void add(int value) { }

// Get element at index
public int get(int index) {

return 0; // Dummy return so that it compiles
}

// Set element at index
public void set(int index) { }

// Remove element at index (and return it)
public int remove(int index) {

return 0; // Dummy return so that it compiles
}

}



 Instead of writing add(), get(), set(), and remove()
first, let's write a few JUnit tests for each of these methods

 Then, we can come back and try to finish the methods so that 
they pass the tests





 Review up to Exam 1



 Work on Project 4


	COMP 2000
	Last time
	Questions?
	Project 4
	Test driven development
	TDD workflow
	Benefits of TDD
	More JUnit practice
	Clock class
	Additional Clock methods
	Using test-driven development
	ArrayList class
	Additional ArrayList methods
	Using test-driven development again
	Upcoming
	Next time…
	Reminders

